Medical Knowledge Graph to Promote Rational Drug Use: Model Development and Performance Evaluation
促进合理用药的医学知识图:模型开发和性能评估
作者: Xiong Liao, Meng Liao, Andi Guo, Xinran Luo, Ziwei Li, Weiyuan Chen, Tianrui Li, Shengdong Du & Zhen Jia
Abstract

    Knowledge Graph (KG) has been proven effective in representing and modeling structured information, especially in the medical domain. However, obtaining structured medical information usually depends on the manual processing of medical experts. Meanwhile, the construction of Medical Knowledge Graph (MKG) remains a crucial problem in medical informatization. This work presents a novel method for constructing MKGto drive the application of Rational Drug Use (RDU). We first collect and preprocess the corpora from various types of resources, and then develop a medical ontology via studying the concepts in RDUdomain, authoritative books and drug instructions. Based on the medical ontology, we formulate a scheme to annotate the corpora and construct the dataset for extracting entities and relations. We utilize two mechanisms to extract entities and relations respectively. The former is based on deep learning, while the latter is the rule-based method. In the last stage, we disambiguate and standardize the results of entity relation extraction to construct and enrich the MKG. The experimental results verify the effectiveness of the proposed methods.


Keywords:Rational Drug Use, Medical Knowledge Graph, Named Entity Recognition, Relation Extraction


摘要

    知识图谱 (KG) 已被证明可有效地表达和建模结构化信息,尤其是在医学领域。然而,获取结构化医疗信息通常依赖于医学专家的人工处理。同时,医学知识图谱(MKG)的构建仍然是医学信息化中的一个关键问题。本文提出了一种通过构建MKG来推动合理用药(RDU)的应用的创新方法。我们首先从各类资源中收集和预处理语料库,然后通过研究 RDU 领域中的概念、权威书籍和药品说明书开发医学本体。基于医学本体,我们制定了我们制定了注释语料库方案,并构建用于提取实体和关系的数据集。我们利用两种机制分别提取实体和关系。前者基于深度的学习,而后者是基于规则的方法。在最后阶段,我们对实体关系提取的结果进行歧义消除和标准化以构建和丰富MKG。实验结果验证了所提方法的有效性。


关键词:合理用药、医学知识图、命名实体识别、关系提取


MKG.png

论文信息 PAPER INFORMATION
所属期刊
Human-Centric Intelligent Systems
ISSN(Online)
2667-1336
学科领域
计算机科学
发表时间
2022-06-29