Visual interactive system (VIS) has been received significant attention for solving various complex problems. However, designing and implementing a novel VIS with the large scale of data is a challenging task. While existing studies have applied various visual analytics (VA) to analyze and visualize insightful information, deep visual analytics (DVA) have considered as a promising technique to provide input evidences and explain system results. In this study, we present several deep learning (DL) techniques for analyzing data with visualization, which summarizes the state-of-the-art review on (i) big data analysis, (ii) cognitive and perception science, (iii) customer behavior analysis, (iv) natural language processing, (v) recommended system, (vi) healthcare analysis, (vii) fintech ecosystem, and (viii) tourism management. We present open research challenges for emerging DVA in the visualization community. We also highlight some key themes from the existing literature that may help to explore for future study. Thus, our goal is to help readers and researchers in DL and VA to understand key aspects in designing VIS for analysing data.
Keywords:Deep visual analytics; visual analytics; visual interactive system; deep learning; machine learning
近年来,可视化分析(VA)在解决各类复杂问题方面得到了广泛关注。然而,设计和运用大规模数据的交互式可视化分析系统极具挑战性。虽然现有研究已经运用了各种数据分析技术,去分析和可视化有洞察力的信息,但深度可视化分析(DVA)作为一项有前景的技术,能提供输入证据,解释系统结果。本研究提出了几种可视化数据分析的深度学习(DL)技术,综述了国内外针对以下几方面的研究现状 (i)大数据分析,(ii)认知与感知科学,(iii)客户行为分析,(iv)自然语言处理,(v)推荐系统,(vi)医疗保健分析,(vii)金融科技生态系统,(viii)旅游管理。本文提出了新兴DVA研究在可视化领域的开放式研究挑战,同时,探索了现有文献中有助于探索未来研究的关键主题。综上所述,本研究旨在帮助深入学习与可视化分析的读者和研究人员理解用于数据分析的交互式DVA的关键要点。
关键词:可视化分析,可视化系统,深度学习,机器学习